6,642 research outputs found

    Thermophysical Phenomena in Metal Additive Manufacturing by Selective Laser Melting: Fundamentals, Modeling, Simulation and Experimentation

    Full text link
    Among the many additive manufacturing (AM) processes for metallic materials, selective laser melting (SLM) is arguably the most versatile in terms of its potential to realize complex geometries along with tailored microstructure. However, the complexity of the SLM process, and the need for predictive relation of powder and process parameters to the part properties, demands further development of computational and experimental methods. This review addresses the fundamental physical phenomena of SLM, with a special emphasis on the associated thermal behavior. Simulation and experimental methods are discussed according to three primary categories. First, macroscopic approaches aim to answer questions at the component level and consider for example the determination of residual stresses or dimensional distortion effects prevalent in SLM. Second, mesoscopic approaches focus on the detection of defects such as excessive surface roughness, residual porosity or inclusions that occur at the mesoscopic length scale of individual powder particles. Third, microscopic approaches investigate the metallurgical microstructure evolution resulting from the high temperature gradients and extreme heating and cooling rates induced by the SLM process. Consideration of physical phenomena on all of these three length scales is mandatory to establish the understanding needed to realize high part quality in many applications, and to fully exploit the potential of SLM and related metal AM processes

    Freshwater reservoir offsets and food crusts: Isotope, AMS, and lipid analyses of experimental cooking residues

    Full text link
    Freshwater reservoir offsets (FROs) occur when AMS dates on charred, encrusted food residues on pottery predate a pot’s chronological context because of the presence of ancient carbon from aquatic resources such as fish. Research over the past two decades has demonstrated that FROs vary widely within and between water bodies and between fish in those water bodies. Lipid analyses have identified aquatic biomarkers that can be extracted from cooking residues as potential evidence for FROs. However, lacking has been efforts to determine empirically how much fish with FROs needs to be cooked in a pot with other resources to result in significant FRO on encrusted cooking residue and what percentage of fish C in a residue is needed to result in the recovery of aquatic biomarkers. Here we provide preliminary assessments of both issues. Our results indicate that in historically-contingent, high alkalinity environments\u3c20%C from fish may result in a statistically significant FRO, but that biomarkers for aquatic resources may be present in the absence of a significant FRO

    Mapping of the Mouse Actin Capping Protein Beta Subunit Gene

    Get PDF
    BACKGROUND: Capping protein (CP), a heterodimer of α and β subunits, is found in all eukaryotes. CP binds to the barbed ends of actin filaments in vitro and controls actin assembly and cell motility in vivo. Vertebrates have three isoforms of CPβ produced by alternatively splicing from one gene; lower organisms have one gene and one isoform. RESULTS: We isolated genomic clones corresponding to the β subunit of mouse CP and identified its chromosomal location by interspecies backcross mapping. CONCLUSIONS: The CPβ gene (Cappb1) mapped to Chromosome 4 between Cdc42 and D4Mit312. Three mouse mutations, snubnose, curly tail, and cribriform degeneration, map in the vicinity of the β gene

    Improved Rheometry of Yield Stress Fluids Using Bespoke Fractal 3D Printed Vanes

    Full text link
    To enable robust rheological measurements of the properties of yield stress fluids, we introduce a class of modified vane fixtures with fractal-like cross-sectional structures. A greater number of outer contact edges leads to increased kinematic homogeneity at the point of yielding and beyond. The vanes are 3D printed using a desktop stereolithography machine, making them inexpensive (disposable), chemically-compatible with a wide range of solvents, and readily adaptable as a base for further design innovations. To complete the tooling set, we introduce a textured 3D printed cup, which attaches to a standard rheometer base. We discuss general design criteria for 3D printed rheometer vanes, including consideration of sample volume displaced by the vanes, stress homogeneity, and secondary flows that constrain the parameter space of potential designs. We also develop a conversion from machine torque to material shear stress for vanes with an arbitrary number of arms. We compare a family of vane designs by measuring the viscosity of Newtonian calibration oils with error <5% relative to reference measurements made with a cone-and-plate geometry. We measure the flow curve of a simple Carbopol yield stress fluid, and show that a 24-arm 3D printed fractal vane agrees within 1% of reference measurements made with a roughened cone-and-plate geometry. Last, we demonstrate use of the 24-arm fractal vane to probe the thixo-elasto-visco-plastic (TEVP) response of a Carbopol-based hair gel, a jammed emulsion (mayonnaise), and a strongly alkaline carbon black-based battery slurry

    A novel smoothed particle hydrodynamics formulation for thermo-capillary phase change problems with focus on metal additive manufacturing melt pool modeling

    Full text link
    Laser-based metal processing including welding and three dimensional printing, involves localized melting of solid or granular raw material, surface tension-driven melt flow and significant evaporation of melt due to the applied very high energy densities. The present work proposes a weakly compressible smoothed particle hydrodynamics formulation for thermo-capillary phase change problems involving solid, liquid and gaseous phases with special focus on selective laser melting, an emerging metal additive manufacturing technique. Evaporation-induced recoil pressure, temperature-dependent surface tension and wetting forces are considered as mechanical interface fluxes, while a Gaussian laser beam heat source and evaporation-induced heat losses are considered as thermal interface fluxes. A novel interface stabilization scheme is proposed, which is shown to allow for a stable and smooth liquid-gas interface by effectively damping spurious interface flows as typically occurring in continuum surface force approaches. Moreover, discretization strategies for the tangential projection of the temperature gradient, as required for the discrete Marangoni forces, are critically reviewed. The proposed formulation is deemed especially suitable for modeling of the melt pool dynamics in metal additive manufacturing because the full range of relevant interface forces is considered and the explicit resolution of the atmospheric gas phase enables a consistent description of pore formation by gas inclusion. The accuracy and robustness of the individual model and method building blocks is verified by means of several selected examples in the context of the selective laser melting process
    • …
    corecore